If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2)+2x-8=0
a = 4; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·4·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*4}=\frac{-2-2\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*4}=\frac{-2+2\sqrt{33}}{8} $
| Y/3*11=y/2-3 | | 647=g-(-506) | | y÷-3=8 | | v-1.9=-6.1 | | 647=g-506 | | v-1.9=6.1 | | 3s=90 | | 12(p-5)+5=0 | | 95=z+18 | | k-7.1=-2.8 | | 9.7−4d=−2.3 | | 4.905t^2-3.4754t-0.72=0 | | n-0.7=-6.7 | | -9/4y+4/5=7/8 | | 2x+15=122 | | 10+k=2.9 | | h+38=44 | | 2x-7+9=2 | | X+y-2=180 | | 5c-3c=8 | | 6(2y-2)+8-3y=32 | | h+43=80 | | 9.81x^2-13.9466x+5.7975=0 | | 1^6n=4^4n+6 | | -3+12=2x-37 | | 12=-16+4x | | -n=16 | | 9.81x^2-13.9466x-5.7975=0 | | 4-(2÷7w)=18 | | 4y+92=44 | | 16+5y=51 | | f(2)=65538 |